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Abstract We investigate a control problem for the heat equation. The goal is to find
an optimal heat transfer coefficient in the dynamic boundary condition such that a
desired temperature distribution at the boundary is adhered. To this end we consider
a function space setting in which the heat flux across the boundary is forced to be
an Lp function with respect to the surface measure, which in turn implies higher
regularity for the time derivative of temperature. We show that the corresponding el-
liptic operator generates a strongly continuous semigroup of contractions and apply
the concept of maximal parabolic regularity. This allows to show the existence of
an optimal control and the derivation of necessary and sufficient optimality condi-
tions.
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1 Introduction

In this paper we study the following optimal control problem for a parabolic equation
with a dynamic boundary condition:

minJ (u, q) := 1

2

∫ T

0

∫
Γ

(u − ud)2dσΓ dt + α

2

∫ T

0

∫
Γ

q(x, t)2dσΓ dt (1a)

subject to the parabolic equation

u′ − ∇ · μ∇u = f, u(0) = u0, on Ω (1b)

combined with mixed Dirichlet/dynamic boundary conditions

u = 0 on J × (∂Ω \ Γ ) (1c)

and

u′ + ν · μ∇u(t) + q(t)u(t) = g(t) on J × Γ. (1d)

Here q and g are bounded, measurable functions on the interval J =]0, T [, taking
their values in the space of functions on Γ , which are bounded and measurable with
respect to the surface measure.

In [17, 46] dynamic boundary conditions are derived for a solid in contact with a
thin layer of stirred liquid. Then q corresponds to a heat exchange coefficient of that
liquid with its outer surrounding. In this spirit one can interpret our model problem
(1a)–(1d) as the optimal control of an active heat sink device, where thermal energy,
generated by a heat source f (t) and transported by conduction inside the domain Ω

has to be transferred through an active boundary Γ cf. Fig. 1. The boundary heat flux
is controlled in such a way that a desired temperature ud is adhered on Γ . Typically,
technical cooling devices only allow for a change of the amount of coolant or the
coolant pressure, corresponding to a spatial and temporal change in the heat transfer
coefficient q , which will serve as our control variable.

Parabolic problems with dynamical boundary conditions are considered by many
authors, see e.g. [4, 6, 7, 9, 24, 43], but there always severe assumptions on the data, as
smoothness, are imposed (compare also [26] and [58], where the boundary condition
on J × Γ is understood as Wentzell’s boundary condition). One main aim of this
work is to show that any smoothness assumptions on the domain and the coefficient
function μ can be avoided, and, additionally, the boundary parts Γ and ∂Ω \ Γ are
really allowed to meet.

Moreover, our intention is to establish a concept which assures that the normal
flux ν · μ∇u(t) over any part of the boundary is well defined by Gauss’ theorem,
and, additionally, the boundary condition (1d) is not an ‘interpretation’ (compare
[47, Chap. 3.2]), but holds in a strict sense. The continuity of the normal flux compo-
nent plays an essential role in connecting and embedding of potential flow systems, as
well as in electronic device simulations, where the normal flux on the boundary is of-
ten coupled to an electric current which stems from a discrete circuit model [22, 29].

In order to motivate our choice of the Banach space, let us recall the derivation
of dynamic boundary conditions in [33]. The key idea is to add a term to the con-
servation of internal energy e, which reflects the heat generated or consumed on the
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Fig. 1 Boundary control of a
time dependent heat source

boundary Γ , i.e. a term like

d

dt

∫
Γ

edσΓ . (2)

In order to account for this contribution to the rate of change of internal energy,
one must choose the corresponding Banach space in a way, such that it includes
distributions, which live on the corresponding boundary part, see [30, Chap. II.2]
or [16, Chap. 1.2] for a detailed discussion. In this spirit, we take—following [3],
[26, 37, 58]—the Banach space X as L̃p = Lp(Ω ∪ Γ ;dx + dσΓ ), where dx is the
Lebesgue measure on Ω and σΓ is the induced boundary measure on the boundary
part Γ . This has—in comparison with the concepts in [40]—the advantage, that u′ +
ν · μ∇u arising in the dynamical boundary condition is forced to be a Lp(Γ ;dσΓ )-
function. Consequently, the equation may be tested by indicator functions, and then
again Gauss’ theorem may be applied. This enables local flux balances, which are
crucial for the foundation of Finite Volume methods for the numerical solution of
such problems, see [8, 27] and [28].

The outline of the paper is as follows. In Sect. 2 we study properties of elliptic
operators on L̃p . Since the treatment in [26] is restricted to constellations of high
regularity for the data and the treatment in [58] is a very abstract setting in terms
of Dirichlet forms, we present here another approach which is, firstly, selfcontained
and, secondly, avoids any smoothness assumption on the data, in particular, on the
domain. This largely extends the applicability of the theory to real-world problems.
In doing so, the construction of the operators on the spaces L̃p and the investigation
of their properties become very transparent. This is based on the assumption that Ω

is a Lipschitz domain and Γ is a suitable part of the boundary (Ω ∪ Γ has to be
regular in the sense of Gröger [38], see details below). We exploit a Cα-regularity
result of Griepentrog and Recke [35] in order to define the corresponding operators
Ap as the maximal restrictions from H

−1,2
Γ to X := Lp(Ω ∪ Γ ;dx + dσΓ ). Due to

a recent result of Cialdea/Maz’ya [15] we are then able to show that the divergence
operators are accretive on the above introduced Lebesgue spaces. Let us mention
that we require only boundedness/ellipticity of the coefficient function μ—not its
symmetry. This leads, via the Lumer-Phillips theorem, to the generator property of a
contraction semigroup on every such L̃p space.

In Sect. 3 we apply the results to the parabolic equation. In contrast to the papers
[26, 58]we aim here at maximal parabolic Lr(]0, T ];X)-regularity, c.f. Theorems 3.2
and 3.7, in order to get the possibility of the treatment of equations with discontinuous
in time boundary conditions. This is achieved by an application of the pioneering re-
sult of Lamberton [45, Corollary 1.1]. Choosing the integrability index r sufficiently
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large, one can show that the solution in fact is Hölder continuous simultaneously in
space and time. Using this, a perturbation argument, preserving maximal parabolic
regularity, allows to include also inhomogeneous boundary conditions. Afterwards
we derive a priori estimates in terms of the data—even uniform for bounded sets of
coefficient functions q .

In Sect. 4 we finally study the optimal control problem. The regularity results
of the previous section allow to prove the existence of an optimal control and the
derivation of necessary and sufficient optimality conditions. Optimality conditions
for optimal control problems governed by semilinear partial differential equations
have been addressed by numerous contributions in the recent past. Regarding elliptic
optimal control problems we mention [11–14] and the references therein. In particu-
lar we refer to [41], where a semilinear elliptic boundary control problem with mixed
boundary conditions and non smooth data is considered. Second order optimality
conditions for control problems governed by instationary equations have been dis-
cussed e.g. in [32] and [52]. In comparison to the very general and abstract setting of
the latter contribution the main novelty of this paper is that we can allow for mixed
Dirichlet/dynamic boundary conditions and the control of parameter function, e.g.
the heat transfer coefficient function.

2 Elliptic Operators on L̃p

2.1 Notations, Definitions

Throughout this paper L(X;Y) denotes the space of bounded linear operators from
X to Y , where X and Y are Banach spaces. If X = Y , then we abbreviate L(X).

In the sequel Ω will always be a bounded Lipschitz domain in R
d and Γ a

part of its boundary, which may be empty. If p is from [1,∞[, then Lp = Lp(Ω)

is the space of complex, Lebesgue measurable, p-integrable functions on Ω , and
Hθ,p = Hθ,p(Ω) are the usual spaces of Bessel potentials, see [55, Chap. 4.2.1] or
[54, Chap. V.3]. Note that the space H 1,q is identical with the Sobolev space W 1,q .
L∞ = L∞(Ω) is the space of Lebesgue measurable, essentially bounded functions
on Ω , and Cα = Cα(Ω) the space of up to the boundary α-Hölder continuous func-
tions on Ω .

We assume that Ω ∪ Γ is a regular set in the following sense:

Definition 2.1 Let Ω ⊂ R
d be a bounded domain and Γ ⊂ ∂Ω be an open part of

its boundary. Ω ∪ Γ is a regular set if for every point x ∈ ∂Ω there exist two open
sets Ux, Vx ⊂ R

d and a bi-Lipschitz transformation φx from Ux onto Vx such that,
x ∈ Ux , φx(x) = 0, and φx(Ux ∩ (Ω ∪ Γ )) coincides with one of the three model sets

E1 = {
y ∈ R

d : y1, . . . , yd ∈] − 1,1[, yd < 0
}
,

E2 = {
y ∈ R

d : y1, . . . , yd ∈] − 1,1[, yd ≤ 0
}
,

E3 = {y ∈ E2 : yd < 0 or y1 > 0}.
(3)

Remark 2.2 The above concept coincides with Gröger’s definition of regular sets,
cf. [38], which is well adjusted to mixed boundary value problems. We can identify
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Γ with the Neumann and ∂Ω \ Γ with the Dirichlet part of the boundary ∂Ω . An
essential point is that one can prove the existence of a continuous extension operator
E : H 1,q (Ω) → H 1,q (Rd) which also continuously extends all Lp spaces, see [31,
Theorem 7.25]. Thus one obtains the usual embedding theorems H 1,q ↪→ Lp .

In two and three space dimensions one can give the following simplifying charac-
terization for a set Ω ∪ Γ to be regular in the sense of Gröger, see [41]:

If Ω ⊆ R
2 is a bounded Lipschitz domain and Γ ⊆ ∂Ω is relatively open, then

Ω ∪ Γ is regular in the sense of Gröger iff ∂Ω \ Γ is the finite union of (non-
degenerate) closed arc pieces.

In R
3 the following characterization can be proved: If Ω ⊂ R

3 is a Lipschitz do-
main and Γ ⊂ ∂Ω is relatively open, then Ω ∪ Γ is regular in the sense of Gröger iff
the following two conditions are satisfied:

(i) ∂Ω \ Γ is the closure of its interior (within ∂Ω).
(ii) for any x ∈ Γ ∩(∂Ω \Γ ) there is an open neighborhood U � x and a bi-Lipschitz

mapping κ : U ∩ Γ ∩ (∂Ω \ Γ ) →] − 1,1[.
Definition 2.3 We define H

θ,q
Γ as the closure in Hθ,q of the set

C∞
Γ (Ω)

def= {
u|Ω : u ∈ C∞

0

(
R

d
)
, supp(u) ∩ (∂Ω \ Γ ) = ∅}

, (4)

and H̆
−1,p
Γ as the space of continuous antilinear forms on H

1,p′
Γ , where 1/p +

1/p′ = 1. We will always denote the (anti-) dual pairing between H
1,q
Γ and H̆

−1,q ′
Γ

by 〈·, ·〉 and note that this pairing extends the scalar product in L2 (compare [10,
Chap. 1] or [50, Chap. 1.4.2]).

As the boundary measure σ on ∂Ω we take the (d − 1)-dimensional Hausdorff
measure Hd−1, restricted to ∂Ω . Due to the property of Ω of being a Lipschitz do-
main, the measure σ can be constructed explicitly in terms of the local bi-Lipschitz
charts around the boundary points, (compare [25, Chap. 3.3.4 C] and [39]).

Finally, for two (complex) Banach spaces X,Y which form an interpolation cou-
ple, the symbol [X,Y ]θ stands for the corresponding complex interpolation space,
see [55, Chap. 1.9].

2.2 Prerequisites

In this section we introduce our notations and collect several important ingredients
that are necessary for the establishment of the main results.

Lemma 2.4

(i) σ may be viewed as bounded, positive Radon measure on Ω , which additionally
satisfies

sup
x∈Rd

sup
r∈]0,1[

σ
(
B(x, r) ∩ Ω

)
r1−d < ∞, (5)

where B(x, r) denotes the ball centered at x with radius r .
(ii) If θ ∈] 1

q
,1], then Hθ,q continuously embeds into Lq(∂Ω,dσ).
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Proof (i) is proved in [39]. Basing on (i), (ii) is proved in [40, Theorem 3.6]. �

Definition 2.5 We define the measure σΓ on Γ as the restriction of σ to Γ . Further,
we define, for any p ∈ [1,∞], the space L̃p as the usual Lebesgue space Lp(Ω ∪ Γ,

dx + dσΓ ).

Remark 2.6 L̃p is topologically isomorphic to the direct sum Lp(Ω)⊕Lp(Γ ;dσΓ ).

Lemma 2.7

(i) Assume d = 2. Then H
1,2
Γ continuously embeds into Lr(∂Ω;dσ) ↪→ Lr(Γ ;dσΓ )

for all r ∈ [1,∞[.
(ii) Assume q < d and r ≤ q d−1

d−q
. Then H

1,q
Γ ↪→ H 1,q continuously embeds into

Lr(∂Ω;dσ) ↪→ Lr(Γ ;dσΓ ).
(iii) Assume q < d and r ≤ q d−1

d−q
. Then H

1,q
Γ ↪→ H 1,q continuously embeds into L̃r .

Proof (i) Sobolev embedding gives H
1,2
Γ ↪→ H

3
2r

,r

Γ for every r ∈]1,∞[; thus
Lemma 2.4 applies.

(ii) The supposition and Sobolev embedding give H 1,q ↪→ Hθ,r for some θ > 1
r
.

Hence, one may apply Lemma 2.4.
(iii) In view of Remark 2.6 and (ii) it remains to show that H 1,q continuously

embeds into Lr. But, due to Sobolev embedding H 1,q continuously embeds into Ls ,
whenever s ≤ qd

d−q
. �

Definition 2.8 Let μ = {μk,l}k,l : Ω −→ B(Rd ;R
d), be a measurable mapping into

the set of real d × d matrices, satisfying the relations

∥∥μ(x)
∥∥

L(Rd ;Rd )
≤ μ· and

d∑
k,l=1

μk,l(x)ξkξl ≥ μ·
d∑

k=1

ξ2
k (6)

for all x ∈ Ω , all ξ = (ξ1, . . . , ξd) ∈ R
d and two strictly positive constants μ· and μ·.

Let t be the following sesquilinear form on H
1,2
Γ × H

1,2
Γ

t[ψ,ϕ] def=
∫

Ω

〈μgradψ,gradϕ〉Cd dx. (7)

t defines an operator −∇ ·μ∇ : H 1,2
Γ → H̆

−1,2
Γ by putting 〈−∇ ·μ∇ψ,ϕ〉 := t[ψ,ϕ].

Remark 2.9 It is easy to check that the form t is sectorial; precisely: its numerical
range is contained in the sector S := {z ∈ C : |�z| ≤ μ·

μ· �z}.
In the sequel we maintain the notation −∇ · μ∇ for the restriction of the operator

−∇ · μ∇ to any of the spaces H̆
−1,q
Γ , if q > 2.

The following regularity result for elliptic boundary value problems is one essential
ingredient in our subsequent proofs.
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Proposition 2.10 Let Ω ∪ Γ be a regular set in the sense of Definition 2.1, and
0 < μ· ≤ μ· < ∞ be the constants from (6). For every number q > d there exist a
constant α = α(q,μ·,μ·,Ω,Γ ) ∈]0,1[ such that dom

H̆
−1,q
Γ

(∇ · μ∇) ↪→ Cα .

Proposition 2.10 was proved in [35, 36] within the scale of Sobolev-Campanato
spaces. A simpler proof, only in the H̆

−1,q
Γ -scale, is given in [41], but limited to the

cases d = 2,3,4.

Proposition 2.11 If q > d and θ ∈]0,1[ is sufficiently close to 1, then even the in-
terpolation space [H̆−1,q

Γ ,dom
H̆

−1,q
Γ

(∇ · μ∇)]θ continuously embeds into a suitable

Hölder space Cβ .

Proof We know from Proposition 2.10 the continuous injection

dom
H̆

−1,q
Γ

(∇ · μ∇) ↪→ Cα.

Using the reiteration theorem for complex interpolation (c.f. [55, Chap. 1.9.3]), one
gets for θ ∈] 1

2 ,1[
[
H̆

−1,q
Γ ,dom

H̆
−1,q
Γ

(∇ · μ∇)
]
θ

= [[
H̆

−1,q
Γ ,dom

H̆
−1,q
Γ

(∇ · μ∇)
]

1
2
,dom

H̆
−1,q
Γ

(∇ · μ∇)
]

2θ−1

↪→ [[
H̆

−1,2
Γ ,dom

H̆
−1,2
Γ

(∇ · μ∇)
]

1
2
,dom

H̆
−1,q
Γ

(∇ · μ∇)
]

2θ−1

= [[
H̆

−1,2
Γ ,H

1,2
Γ

]
1
2
,dom

H̆
−1,q
Γ

(∇ · μ∇)
]

2θ−1

= [
L2,dom

H̆
−1,q
Γ

(∇ · μ∇)
]

2θ−1.

Forthcoming [L2,dom
H̆

−1,q
Γ

(∇ · μ∇)]2θ−1 continuously embeds into [L2,Cα]2θ−1

by Proposition 2.10, and this last interpolation space is known to embed into a suit-
able space Cβ , if θ is sufficiently close to 1 (see [34, Chap. 7] for details, compare
also [56]). �

In order to define the maximal restriction of −∇ · μ∇ to L̃p we must first explain
in which way Lp(Ω ∪ Γ,dx + dσΓ ) embeds into H̆

−1,2
Γ :

Definition 2.12 We define the embedding operator E : L2(Ω ∪ Γ,dx + dσΓ ) →
H̆

−1,2
Γ by

〈Ef,ψ〉 :=
∫

Ω∪Γ

f (x)ψ(x)dx + dσΓ , ψ ∈ H
1,2
Γ . (8)

We recall that this is justified because every ψ ∈ H
1,2
Γ is square integrable with re-

spect to dx + dσΓ . Thus, for p > 2, Lp(Ω ∪ Γ,dx + dσΓ ) is embedded into H̆
−1,2
Γ

via the natural injection Lp(Ω ∪ Γ,dx + dσΓ ) ↪→ L2(Ω ∪ Γ,dx + dσΓ ) and E.
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Remark 2.13

(i) It is clear that the E is nothing else as the adjoint of the mapping

H
1,2
Γ � ψ �→ (

ψ, trψ |Γ
) ∈ L2(Ω) ⊕ L2(Γ,σΓ ) � L2(Ω ∪ Γ ;dx + dσΓ )

(ii) E is a continuous injection, because the scalar products with all H
1,2
Γ -functions

determine an element f ∈ L2(Ω ∪ Γ,dx + dσΓ ) uniquely.
(iii) It is essential to observe that the embedding E extends the usual embedding of

L2(Ω) ↪→ H̆
−1,2
Γ in the following manner: identifying any element f ∈ L2(Ω)

with its extension to Ω ∪ Γ by 0, one has for all ψ ∈ H
1,2
Γ

〈Ef,ψ〉 =
∫

Ω∪Γ

f (x)ψ(x)dx + dσΓ =
∫

Ω

f (x)ψ(x)dx.

Lemma 2.14 If p ≥ d , then L̃p continuously embeds into a space H̆
−1,d+ε
Γ with

ε = ε(d) > 0.

Proof Obviously, it suffices to show the claim for p = d . One has the continuous

embedding L̃d ↪→ H̆
−1,q
Γ for some q > d if H

1,s
Γ continuously embeds into L̃

d
d−1 for

some s ∈ [1, d
d−1 [. Putting q := d

d−1 one obtains q d−1
d−q

= d−1
d−2 , what is larger than

d
d−1 . Hence, taking s ∈ [1, d

d−1 [ sufficiently close to d
d−1 it remains d

d−1 < s d−1
d−s

, and
one may apply (ii) of Lemma 2.7. �

Lemma 2.15

(i) There is a p̂ = p̂(d) > 2, such that (−∇ · μ∇ + 1)−1 continuously maps L̃2

into L̃p̂ .
(ii) There is an α > 0, such that for every p ≥ d , (−∇ ·μ∇ + 1)−1 ∈ L(L̃p;Cα) ↪→

L(L̃p).
(iii) Defining r = r(θ)= ( 1−θ

2 + θ
d
)−1 and s = s(θ)= p̂

1−θ
one has (−∇ ·μ∇ +1)−1 ∈

L(L̃r ; L̃s). The function θ �→ s(θ) − r(θ) is positive and strictly increasing on
[0,1].

Proof (i) In the case d = 2 the assertion follows directly from Lemma 2.14 and
Proposition 2.10. Assume now d ≥ 3. Exploiting Lemma 2.7 and duality, one gets
L̃2 ↪→ H̆

−1,2
Γ . This implies the continuity of

(−∇ · μ∇ + 1)−1 : L̃2 �→ H
1,2
Γ ↪→ L̃p̂, (9)

with a p̂ = p̂(d) > 2, see Lemma 2.7.
(ii) is implied by the embedding L̃p ↪→ H̆

−1,d+ε
Γ (ε > 0) and Proposition 2.10.

(iii) The first assertion follows from (i) and (ii) by Riesz-Thorin. The second is a
straightforward calculation. �
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2.3 The Operators Ap

We will start with the definition of the operator Ap . Furthermore, we elaborate im-
portant properties of the operator.

Definition 2.16 For p ≥ 2, we define Ap as the maximal restriction of −∇ · μ∇
to L̃p .

Lemma 2.17 Assume p ∈ [2,∞[.
(i) The domain of Ap is contained in L̃p . Hence, Ap can be understood as an oper-

ator on L̃p , which is, additionally, a closed one.
(ii) If p ≥ d and θ ∈]0,1[ is sufficiently close to 1, then there is a β > 0 such that

even [L̃p,domL̃p (Ap)]θ ↪→ Cβ .

Proof (i) It suffices to prove (−∇ · μ∇ + 1)−1 ∈ L(L̃p), which is implied by
Lemma 2.15.

(ii) follows from Proposition 2.11 by means of the continuous embedding L̃p ↪→
L̃d ↪→ H̆

−1,d+ε
Γ , c.f. Lemma 2.14. �

Remark 2.18

(i) In the spirit of Lemma 2.17 we will only write dom(Ap) instead of domL̃p (Ap)

in the sequel.
(ii) Ap + 1 is a fortiori a surjection onto L̃p because it is the maximal restriction of

−∇ ·μ∇+1 to L̃p , and −∇ ·μ∇+1 is a surjection onto H̆
−1,2
Γ by Lax-Milgram.

(iii) Lemma 2.17 shows that an element ψ ∈ H
1,2
Γ belongs to dom(Ap) iff the anti-

linear form H
1,2
Γ � ϕ �→ t[ψ,ϕ] is continuous, when H

1,2
Γ is equipped only with

the L̃p′
norm.

Let us conclude some basic properties of A2:

Lemma 2.19

(i) −A2 generates an analytic semigroup of contractions.
(ii) A∗

2 = Â2, where Â2 is the operator which corresponds to the adjoint coefficient
function μ∗.

(iii) Let α be the Hölder exponent from Proposition 2.10.
There is a positive integer j such that the mapping

(A2 + 1)−j : L̃2 −→ Cα ↪→ L̃∞ (10)

is well defined and continuous. If d = 2, then j = 1 works.
(iv) Further, each semigroup operator e−tA2 , t > 0, maps L̃2 continuously into

Cα ↪→ L̃∞.

Proof (i) The form t is sectorial (compare Remark 2.9); hence one has the estimate
‖(A2 − z)−1‖L(L̃2)

≤ 1
dist(S,z)

, since A2 + 1 is a surjection, c.f. [44, Chap. V.3.1]. In
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particular, one has ‖(A2 + t)−1‖L(L̃2)
≤ 1

t
for t > 0 and may apply the Hille-Yosida

theorem in order to obtain the contraction property of the semigroup.
(ii) To the coefficient function μ∗ there corresponds the adjoint form t∗ and to this

the adjoint operator A∗
2, see [44, Chap. VI.2.1].

(iii) The assertion follows from Lemma 2.17(ii): when applying (A2 +1)−1 several
times, starting in L̃2, the integrability index in the target spaces improves in every step
more as in the previous one. Thus, one ends up after finitely many steps in L̃d . Then
applying (A2 + 1)−1 a last time, Lemma 2.17 gives the assertion.

(iv) Let j as above. There is
∥∥e−tA2

∥∥
L(L̃2;Cα)

≤ ∥∥(A2 + 1)−j
∥∥

L(L̃2;Cα)

∥∥(A2 + 1)j e−tA2
∥∥

L(L̃2;L̃2)
.

The first factor on the right hand side is finite according to the foregoing assertion.
The second one is finite due to the fact that A2—as a maximal sectorial operator on
a Hilbert space—admits a bounded holomorphic calculus, see [18, Chap. 2.10]. �

The next result contains the essential step towards maximal parabolic regularity of
Ap on L̃p .

Theorem 2.20 For every p ∈ [2,∞[, −Ap generates a strongly continuous semi-

group of contractions on L̃p .

The proof will follow from several subsequent lemmas.

Lemma 2.21 Let ψ ∈ H
1,2
Γ be bounded and r > 0. Then there is a sequence

{ψn}n from C∞
0 (Rd) such that supp(ψn) ∩ (∂Ω \ Γ ) = ∅ and the sequence

{(ψn|Ω, |ψn|rψn|Ω)}n converges in H 1,2 × H 1,2 to (ψ, |ψ |rψ). In particular,

|ψ |rψ ∈ H
1,2
Γ .

Proof Due to the definition of H
1,2
Γ , there is a sequence {ψ̂n}n of C∞

0 (Rd)-functions
with supp(ψ̂n)∩ (∂Ω \Γ ) = ∅ and ψ̂n|Ω → ψ in H 1,2 for n → ∞. Let c be a bound
for |ψ |. Let us put ϕ̂n := max(−c,min(c,�ψ̂n)) and φ̂n := max(−c,min(c,�ψn)).
By a classical result of [49] we have:

ϕ̂n|Ω = max
(−c,min(c,�ψ̂n|Ω)

) → max
(−c,min(c,�ψ)

) = �ψ in H 1,2 (11)

and

φ̂n|Ω = max
(−c,min(c,�ψ̂n|Ω)

) → max
(−c,min(c,�ψ)

) = �ψ in H 1,2. (12)

Obviously, ϕ̂n, φ̂n are no more C∞ functions, but uniformly bounded, and their sup-
ports do not intersect ∂Ω \ Γ . By a usual mollifier argument, we obtain functions
ϕn,φn ∈ C∞(Rd) with the properties |ϕn| ≤ c, |φn| ≤ c, supp(ϕn) ∩ (∂Ω \ Γ ) =
supp(φn) ∩ (∂Ω \ Γ ) = ∅ and

‖ϕ̂n − ϕn‖H 1,2(Rd ) + ‖φ̂n − φn‖H 1,2(Rd ) ≤ 1

n
. (13)
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Finally, one estimates
∥∥∣∣ϕn + iφn

∣∣r (ϕn + iφn)|Ω − |ψ |rψ∥∥
H 1,2

≤ ∥∥|ϕn + iφn|r (ϕn + iφn) − |ϕ̂n + iφ̂n|r (ϕ̂n + iφ̂n)
∥∥

H 1,2(Rd )
(14)

+ ∥∥∣∣ϕ̂n + iφ̂n

∣∣r (ϕ̂n + iφ̂n)|Ω − |ψ |rψ∥∥
H 1,2 (15)

and observes that both, (14) and (15), tend to 0, due to (11), (12), (13) and the uniform
boundedness of the functions ϕ̂n, φ̂n, ϕn,φn. �

Lemma 2.22 If p ∈ [d,∞[, then the operator −Ap is dissipative, cf. [51, 1.4, Defi-
nition 4.1].

Proof According to Lemma 2.15, every ψ ∈ dom(Ap) ⊂ H
1,2
Γ is a bounded function

on Ω . In view of Lemma 2.21 we thus have (ψ, |ψ |p−2ψ) ∈ dom t. This implies by
the definition of Ap ,

∫
Ω∪Γ

Apψ |ψ |p−2ψdx + dσΓ = t
[
ψ, |ψ |p−2ψ

]
.

Hence, one has only to show that

−�t
[
ψ, |ψ |p−2ψ

] ≤ 0 (16)

for every ψ ∈ dom(Ap) (what is called in [15] the Lp-dissipativity of the form t).
We show (16) first for functions ψ ∈ C∞

Γ (Ω) (c.f. (4)), thereby proceeding as in the

proof of Lemma 1 from [15]: putting ϕ := |ψ | p−2
2 ψ one obtains

�t
[
ψ,ψ |ψ |p−2]

= �
∫

Ω

〈
μ∇ψ,∇(|ψ |p−2ψ

)〉
Cd dx

= �
∫

Ω

〈
μ∇(|ϕ| 2−p

p ϕ
)
,∇(|ϕ| p−2

p ϕ
)〉

Cd dx

= �
(∫

Ω

〈μ∇ϕ,∇ϕ〉Cd dx −
(

1 − 2

p

)∫
Ω

〈(
μ − μ∗)∇|ϕ|, ϕ

|ϕ|∇ϕ

〉
Cd

dx

−
(

1 − 2

p

)2 ∫
Ω

〈μ∇|ϕ|,∇|ϕ|〉Cd dx

)
(17)

Again following [15], we put Φ := �(
ϕ
|ϕ|∇ϕ) and Ψ := �(

ϕ
|ϕ|∇ϕ). Recalling that μ

was a real coefficient matrix, one calculates

�
∫

Ω

〈μ∇ϕ,∇ϕ〉Cd dx = �
∫

Ω

〈
μ

ϕ

|ϕ|∇ϕ,
ϕ

|ϕ|∇ϕ

〉
Cd

dx

= �
∫

Ω

〈
μ(Φ + iΨ ),Φ + iΨ

〉
Cd dx

=
∫

Ω

〈μΦ,Φ〉Cd dx +
∫

Ω

〈μΨ,Ψ 〉Cd dx (18)
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�
∫

Ω

〈(
μ − μ∗)∇|ϕ|, ϕ

|ϕ|∇ϕ

〉
Cd

dx =
∫

Ω

〈�(
μ − μ∗)Φ,Ψ

〉
Cd dx = 0, (19)

�
∫

Ω

〈
μ∇|ϕ|,∇|ϕ|〉

Cd dx =
∫

Ω

〈μΦ,Φ〉Cd dx. (20)

Inserting this into (17), one obtains (16) for all ψ ∈ C∞
Γ (Ω). Let now ψ be any

element from dom(Ap). Since ψ is bounded, there is a sequence {ψn}n from C∞
0 (Rd)

such that the sequence {(ψn|Ω, |ψn|rψn|Ω)}n ⊂ C∞
Γ (Ω) converges in H 1,2 × H 1,2

to (ψ, |ψ |rψ), c.f. Lemma 2.21. Thus, (16) extends from C∞
Γ (Ω) to dom(Ap) by the

continuity of t. �

Lemma 2.23 Assume p ∈ [d,∞[.
(i) dom(Ap) is dense in L̃p .

(ii) −Ap is the generator of a strongly continuous semigroup of contractions.

Proof (i) The density follows from the dissipativity of −Ap , proven in Lemma 2.22,
the surjectivity of Ap +1 and a well known theorem, heavily resting on the reflexivity
of L̃p (cf. Pazy [51, 1.4, Theorem 4.6]).

(ii) follows from (i), Lemma 2.22 and the Lumer–Phillips theorem [51, 1.4, Theo-
rem 4.3]. �

Lemma 2.24 If p is any number from [2,∞[ then dom(Ap) is dense in L̃p .

Proof The assertion is already proved for p ≥ d . Let now p be from [2, d[; then
dom(Ad) ⊂ dom(Ap). Hence, as dom(Ad) is dense in L̃d , and L̃d is dense in L̃p ,
dom(Ap) must be dense in L̃p . �

In order to prove Theorem 2.20, it remains to show that −Ap also generates a
continuous semigroup of contraction on L̃p , if p ∈ [2, d[. This is proved for p = 2
in Lemma 2.19(i), what, in particular, finishes the case d = 2. If d > 2 and p ∈]2, d[
one obtains by Riesz-Thorin

∥∥e−tAp
∥∥

L(L̃p)
≤ ∥∥e−tA2

∥∥1−θ

L(L̃2)

∥∥e−tAd
∥∥θ

L(L̃d )
≤ 1

with θ = d
p

p−2
d−2 . Further, for ψ ∈ L̃d we have

lim
t �→0

∥∥e−tApψ − ψ
∥∥

L̃p ≤ c lim
t �→0

∥∥e−tAd ψ − ψ
∥∥

L̃d = 0.

But, by the density of L̃d in L̃p , the equality limt �→0 ‖e−tApψ − ψ‖L̃p = 0 extends
to all ψ ∈ L̃p , due to the property ‖e−tAp‖L(L̃p) ≤ 1.

Theorem 2.20 justifies the following definition, supplementing Definition 2.16:

Definition 2.25 For p ∈ [1,2[, Ap is the adjoint of Âp′ , where Âp′ is again the
operator which corresponds to the adjoint coefficient function μ∗ on the space L̃p′

with p′ = p/(p − 1).
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Remark 2.26 Due to Lemma 2.19, the restriction of Ap to L̃2 equals A2, if p ∈ [1,2[.
In other words: Ap is an extension of A2 and an extension of Aq , if q > p.

With the help of classical duality results one easily reproduces the statements on
Ap for the case p ∈]1,2[:

Theorem 2.27 Suppose p ∈]1,2[.
(i) Ap is closed and densely defined.

(ii) −Ap generates a strongly continuous contraction semigroup on L̃p .

Proof (i) See [44, III.§5, Theorem 5.29].
(ii) In view of

(Ap + ρ)−1 = (
(Â p

p−1
+ ρ)−1)∗ (21)

(see [44, III.§5, Theorem 5.30]) the assertion follows from (i) and the Hille-Yosida
theorem. �

Lemma 2.28 The semigroup e−tA2 , t > 0 induces semigroups of contractions on L̃∞
and L̃1. The second is strongly continuous while the first is not.

Proof From Lemma 2.17(i) we know that e−tA2 ∈ L(L̃∞, L̃∞) and {e−tA2}t>0 ob-
viously forms a semigroup on L̃∞. It remains to show the contractivity of e−tA2

on L̃∞. Indeed, due to the contractivity of e−tA2 on L̃p for all p ∈ [2,∞[, there is
for all ψ ∈ L̃∞

∥∥e−tA2ψ
∥∥

L̃∞
∞←p←−−− ∥∥e−tA2ψ

∥∥
L̃p ≤ ‖ψ‖L̃p

p→∞−−−→ ‖ψ‖L̃∞ .

N.B. If ϕ ∈ L̃∞, then ‖ϕ‖L̃∞ = limp→∞‖ϕ‖L̃p . Let us turn to the L̃1 case: by
Lebesgue dominance and the contractivity of e−tAp on L̃p (p �= 1) one has for every
ψ ∈ L̃2

∥∥e−tA2ψ
∥∥

L̃1

1←p←−−− ∥∥e−tA2ψ
∥∥

L̃p ≤ ‖ψ‖L̃p

p→1−−−→ ‖ψ‖L̃1 .

Thus, e−tA2 is a contraction operator on L̃2, if this space is equipped with the L̃1

norm. Obviously, it extends to a contraction operator on L̃1. The strong continuity on
L̃1 follows from

∥∥e−tA2ψ − ψ
∥∥

L̃1 ≤ c
∥∥e−tA2ψ − ψ

∥∥
L̃2 , ψ ∈ L̃2,

the strong continuity of the semigroup on L̃2 and the uniform boundedness of the
semigroup operators on L̃2.

The semigroup cannot be strongly continuous on L̃∞ since else dom(A∞) had to

be dense in L̃∞—what is not the case, see Proposition 2.10. �
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3 The Parabolic Equation

In this section we will draw conclusions for parabolic equations. Throughout this
section J always denotes a bounded interval ]0, T [ and X a Banach space. Let us
first define two further function spaces: by W 1,s(J ;X) we denote the subspace of
functions from Ls(J ;X) which have a distributional derivative, also belonging to
Ls(J ;X) (see [2, Chap. III.1]). By W

1,s
0 (J ;X) we mean the subspace of W 1,s(J ;X)

whose elements take the value 0 ∈ X in the point 0 ∈ J̄ .

Definition 3.1 Let 1 < s < ∞ and D be a dense subspace of the Banach space X.
Assume that A : J ∈ t �→ A(t) ∈ L(D;X) is a bounded, strongly (Lebesgue) mea-
surable mapping, where each A(t) is a closed operator with D as its domain. We
say that A satisfies maximal parabolic Ls(J ;X)-regularity, if for any f ∈ Ls(J ;X)

there exists a unique function u ∈ W
1,s
0 (J ;X) ∩ Ls(J ;D) satisfying

u′ + A(·)u = f, (22)

where the time derivative is taken in the sense of X-valued distributions on J (see
[2, Chap. III.1]).

We proceed with some comments concerning maximal parabolic regularity:

(i) If A satisfies maximal parabolic Ls(J ;X) regularity, then the mapping
W

1,s
0 (J ;X) ∩ Ls(J ;D) � u �→ u′ + Au ∈ Ls(J ;X) is a continuous bijection.

Hence, the inverse is continuous by the open mapping theorem, and the solution
u of (22) admits the estimate

‖u′‖Ls(J ;X) + ‖u‖Ls(J ;D) ≤ c‖f ‖Ls(J ;X).

for some constant c, independent from f .
(ii) If A ≡ A is the constant mapping, then it is well known that the property of

maximal parabolic regularity of A is independent of s ∈]1,∞[ and the specific
choice of the interval J (cf. [21]). In this spirit, we then simply say that A satis-
fies maximal parabolic regularity on X.

(iii) If an operator A satisfies maximal parabolic regularity on a Banach space X,
then its negative generates an analytic semigroup on X (cf. [21]).

(iv) If X is a Hilbert space, then the converse is also true: The negative of every
generator of an analytic semigroup on X satisfies maximal parabolic regularity,
cf. [20] or [21].

(v) Observe that (see [2, Theorem 4.10.2])

W 1,s(J ;X) ∩ Ls(J ;D) ↪→ C
(
J ; (X,D)1− 1

s
,s

)
. (23)

Theorem 3.2 For any p ∈]1,∞[ the operator Ap satisfies maximal parabolic regu-
larity on L̃p .
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Proof For every p ∈ [1,∞] the semigroup operators e−tAp are contractions on L̃p ,
according to Theorem 2.20, Theorem 2.27 and Lemma 2.28. Moreover, the semi-
group, generated by A2 on L̃2, is analytic, see Lemma 2.19. Thus, the result of Lam-
berton, cf. [45, Corollary 1.1] gives the assertion. �

Definition 3.3 Let us fix a bounded, measurable Lp(Γ )-valued function q on J .
Then we define for ψ ∈ C(Ω) and any t ∈ J the operator B(t;q) : C(Ω) → Lp(Γ )

by

B(t;q)ψ = q(t)ψ |Γ . (24)

Furthermore, we introduce B(·;q) : J � t �→ B(t;q).

Theorem 3.4 Assume p ≥ d , s ∈]1,∞[ and q as above.

(i) Then Ap + B(·;q) also satisfies maximal parabolic Ls(J ; L̃p) regularity.
(ii) The norms ‖( ∂

∂t
+ Ap + B(·;q))−1‖L(Ls(J ;L̃p);Ls(J ;dom(Ap))∩W

1,s
0 (J ;L̃p))

are uni-

formly bounded, if q runs through a bounded subset of L∞(J ;Lp(Γ )). In par-
ticular, for every f ∈ Ls(J ; L̃p), the set of solutions for the equations

u′ + Apu + B(·, q)u = f

is bounded in Ls(J ;dom(Ap)) ∩ W
1,s
0 (J ; L̃p)), if q runs through a bounded

subset of L∞(J ;Lp(Γ )).

Proof (i) Due to Lemma 2.17(ii) there is a θ ∈]0,1[ which allows the continuous
embedding [L̃p,dom(Ap)]θ ↪→ C(Ω). Applying the interpolation inequality and
Young’s inequality, this gives for all ψ ∈ dom(Ap) the estimate

‖ψ‖C(Ω) ≤ c‖ψ‖1−θ

L̃p ‖ψ‖θ
dom(Ap) ≤ δ‖ψ‖dom(Ap) + c

1
1−θ

(
1

δ

) θ
1−θ ‖ψ‖L̃p ,

for every δ > 0. Let us denote the operator which assigns to the function f ∈
Lr(J ; L̃p) the solution u of

∂u

∂t
+ Apu + λu = f, u(0) = 0

by ( ∂
∂t

+ Ap + λ)−1 and show

∥∥∥∥
(

∂

∂t
+ Ap + λ

)−1∥∥∥∥
L(Lr (J ;L̃p))

≤ 1

λ
, for λ > 0. (25)

As is well known, ( ∂
∂t

+ Ap + λ)−1 acts as

(
∂

∂t
+ Ap + λ

)−1

f (t) =
∫ t

0
e−(t−s)(Ap+λ)f (s)ds.
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Due to the contractivity of the semigroup operators e−tAp on L̃p , one can thus esti-
mate
∥∥∥∥
(

∂

∂t
+ Ap + λ

)−1

f (t)

∥∥∥∥
L̃p

≤
∫ t

0
e−λ(t−s)

∥∥f (s)
∥∥

L̃pds = e−λ·χ]0,∞[ ∗ ∥∥f (·)∥∥
L̃p (t).

From this, (25) follows by an application of Young’s inequality, see [53, Chap. IX.4].
Hence, one can estimate for all ψ ∈ dom(Ap)

∥∥B(t;q)ψ
∥∥

L̃p ≤ ∥∥q(t)
∥∥

L̃p‖ψ‖C(Ω)

≤ ∥∥q(t)
∥∥

L̃p

(
δ‖ψ‖dom(Ap) + c

1
1−θ

(
1

δ

) θ
1−θ ‖ψ‖L̃p

)
, δ > 0 (26)

This allows us to estimate for any f ∈ Ls(J ; L̃p):

∥∥∥∥B(·, q)

(
∂

∂t
+ Ap + λ

)−1

f

∥∥∥∥
Ls(J ;L̃p)

=
(∫

J

∥∥∥∥q(t)

(
∂

∂t
+ Ap + λ

)−1

f (t)

∥∥∥∥
s

L̃p

dt

)1/s

≤ sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )

(∫
J

(
δ

∥∥∥∥Ap

(
∂

∂t
+ Ap + λ

)−1

f (t)

∥∥∥∥
L̃p

+ c
1

1−θ

(
1

δ

) θ
1−θ

∥∥∥∥
(

∂

∂t
+ Ap + λ

)−1

f (t)

∥∥∥∥
L̃p

)s

dt

)1/s

≤ sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )
δ

∥∥∥∥Ap

(
∂

∂t
+ Ap

)−1(
∂

∂t
+ Ap

)(
∂

∂t
+ Ap + λ

)−1

f

∥∥∥∥
Ls(J ;L̃p)

+ sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )
c

1
1−θ

(
1

δ

) θ
1−θ 1

λ
‖f ‖

Ls(J ;L̃p)

≤ sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )
δ

∥∥∥∥
(

∂

∂t
+ Ap

)−1∥∥∥∥
L(Ls(J ;L̃p);Ls(J ;dom(Ap)))

2‖f ‖
Ls(J ;L̃p)

+ sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )
c

1
1−θ

(
1

δ

) θ
1−θ 1

λ
‖f ‖

Ls(J ;L̃p)

Now we choose

δ := 1

8 supt∈J ‖q(t)‖Lp(Γ )‖( ∂
∂t

+ Ap)−1‖L(Ls(J ;L̃p);Ls(J ;dom(Ap)))

and afterwards

λ := 4 sup
t∈J

∥∥q(t)
∥∥

Lp(Γ )
c

1
1−θ

(
1

δ

) θ
1−θ

.
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Thus, we get
∥∥∥∥B(·, q)

(
∂

∂t
+ Ap + λ

)−1∥∥∥∥
L(Ls(J ;L̃p))

≤ 1

2
. (27)

This shows that the series
∑∞

j=0(−1)j (B(·, q)( ∂
∂t

+ Ap + λ)−1)j absolutely con-

verges in L(Ls(J ; L̃p)) and the operator ( ∂
∂t

+ Ap + λ)−1 ∑∞
j=0(−1)j (B(·, q)( ∂

∂t
+

Ap + λ)−1)j equals ( ∂
∂t

+ Ap + B(·, q) + λ)−1. Moreover, (27) implies

∥∥∥∥
(

∂

∂t
+ Ap + B(·, q) + λ

)−1∥∥∥∥
L(Ls(J,L̃p);Ls(J ;dom(Ap))∩W

1,s
0 (J ;L̃p))

≤ 2

∥∥∥∥
(

∂

∂t
+ Ap + λ

)−1∥∥∥∥
L(Ls(J,L̃p);Ls(J ;dom(Ap))∩W

1,s
0 (J ;L̃p))

Finally, one notices that u ∈ Ls(J ;dom(Ap)) ∩ W
1,s
0 (J ; L̃p) satisfies

∂u

∂t
+ Apu + B(·, q)u = f

iff v := e−λ·u satisfies

∂v

∂t
+ (Ap + λ)v + B(·, q)v = g, with g = e−λ·f.

This can be expressed as the equality

(
∂

∂t
+ Ap + B(·, q)

)−1

= e−λ·
(

∂

∂t
+ Ap + λ + B(·, q)

)−1

eλ·.

Since the multiplication operators eλ·, e−λ· act boundedly on Ls(J ; L̃p) and
Ls(J ;dom(Ap)) ∩ W

1,s
0 (J ; L̃p), respectively, the assertions are proved. �

Remark 3.5 The proof is closely oriented at [5, Proposition 1.3], we only make some
things more transparent in order to obtain uniformity in q .

Let us now consider nonzero initial conditions; for doing so we need the following
result:

Proposition 3.6 ([48] Proposition 2.2.2) Let A be injective and a generator of an
analytic semigroup on a Banach space X with D as its domain. Then

(X,D)1− 1
s
,s

= {
ψ ∈ X : Ae−·Aψ ∈ Ls(J ;X)

}
. (28)

Theorem 3.7 Assume p ≥ d , s ∈]1,∞[, q as above and u0 ∈ (L̃p,dom(Ap))1− 1
s
,s

.
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(i) Then, for every f ∈ Ls(J ; L̃p) the initial value problem

u′ + Apu + B(·;q)u = f, u(0) = u0 (29)

admits a unique solution u ∈ W 1,s(J ; L̃p) ∩ Ls(J ;dom(Ap)).
(ii) If q runs through a bounded set in L∞(J ;Lp(Γ )) and u0 runs through a

bounded set in (L̃p,dom(Ap))1− 1
s
,s

, then the associated set of solutions u of

(29) forms a bounded set in W 1,s(J ; L̃p) ∩ Ls(J ;dom(Ap)).

Proof (i) −(Ap + 1) generates an analytic semigroup on L̃p and is injective. Let us
denote the function J � t �→ e−t (Ap+1)u0 by w. Due to Proposition 3.6, the function

(Ap + 1)w(·) = −w′ belongs to Ls(J ; L̃p). In other words, w ∈ Ls(J ;dom(Ap)).

Then, according to (26), the function J � t �→ B(t;q)w(t) belongs to Ls(J ; L̃p).
Making now an ansatz u := w + v, one recognizes that u fulfills (29) if v ∈
W

1,s
0 (J ; L̃p) ∩ Ls(J ;dom(Ap)) satisfies

v′ + Apv + B(·;q)v = f − B(·;q)w + w. (30)

But (30) is uniquely solvable in W
1,s
0 (J ; L̃p)∩Ls(J ;dom(Ap)), due to Theorem 3.4.

(ii) It is clear that the functions J � t �→ B(t;q)w(t) form a bounded subset of
Ls(J ; L̃p). Thus, the solutions v of (30) form a bounded subset of W

1,s
0 (J ; L̃p) ∩

Ls(J ;dom(Ap)), due to Theorem 3.4. �

Remark 3.8 Note that the regularity assumption for q and the corresponding charac-
terization of the operator B(t;q) in Definition 3.3 is related to the control problem
to be investigated in Sect. 4. In particular the solution of the initial value problem is
forced to be continuous in space. If we assume q to be measurable and essentially
bounded in space and time we can define B(t, q) on L̃p . A close inspection of the
proofs of Theorems 3.4 and 3.7 then shows that these results also hold in the case
p ∈ (1, d).

Theorem 3.9 Assume p ≥ d and let θ ∈]0,1[ be a number, such that

[
L̃p,dom(Ap)

]
θ

↪→ Cβ (31)

for some β > 0. If s > 1
1−θ

and f belongs to Ls(J ; L̃p), then the solution u to (29)

even belongs to a space Cγ (J ;Cβ) ↪→ Cδ(J × Ω) with δ = min(β, γ ).
If q runs through a bounded set in L∞(J ;Lp(Γ )), then the set of solutions u to

(29) forms a bounded set in Cδ(J × Ω).

To prove the theorem, we first formulate

Lemma 3.10 Assume that X,Z are Banach spaces with continuous injection
Z ↪→ X. Then, for every θ ∈ [0,1 − 1

r
[ there is a γ = γ (θ) such that Lr(J ;Z) ∩

W 1,r (J ;X) continuously injects into Cγ (J ; [X,Z]θ ).
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Proof An application of Hölder’s inequality yields the embedding

W 1,r (J ;X) ↪→ Cδ(J ;X) with δ = 1 − 1

r
. (32)

Secondly, one has the continuous embedding

W 1,r (J ;X) ∩ Lr(J ;Z) ↪→ C
(
J ; (X,Z)1− 1

r
,r

)
↪→ C

(
J ; [X,Z]θ

)
(33)

(see [2, Theorem 4.10.2]). From (32) and (33) the claim follows by a straightfor-
ward application of the re-iteration theorem for complex interpolation, see [19] for a
complete proof. �

Now, we are in a position to prove Theorem 3.9.

Proof First, Lemma 2.17 tells us that such θ in fact exists. The condition s > 1
1−θ

is

obviously equivalent to θ < 1 − 1
s
. Then Theorem 3.7, combined with Lemma 3.10,

proves the assertions. �

4 Application to Optimal Control Problems

4.1 Problem Setting

For convenience we recall the parabolic optimal control problem to be studied.

minJ (u, q) := 1

2

∫ T

0

∫
Γ

(u − ud)dσΓ dt + α

2

∫ T

0

∫
Γ

q(x, t)2dσΓ dt

ut − ∇ · μ∇u = f in Q := Ω × (0, T )

ut + ν · μ∇u + qu = g on ΣR := Γ × (0, T )

u = 0 on ΣD := (∂Ω \ Γ ) × (0, T )

u(x,0) = u0(x) in Ω̄

0 < qa ≤ q(x, t) ≤ qb a.e. on ΣR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(P)

The set of admissible controls for problem (P) is denoted by

Qad = {
q ∈ L∞(

0, T ;Lp(Γ )
) : qa ≤ q(x, t) ≤ qb a.e. in ΣR

}
.

We summarize the assumptions for the data.

Assumption 4.1

• Ω ⊂ R
d and Γ ⊂ ∂Ω such that Ω ∪ Γ is regular in the sense of Gröger, cf. Defi-

nition 2.1
• p ≥ d and s = max{s̃,2} where s̃ ∈ [1,∞[ has been chosen according to Theo-

rem 3.9
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• The bounds qa, qb in the control constraints are real numbers with 0 < qa < qb

• f ∈ Ls(0, T ,Lp(Ω)) and ud, g ∈ Ls(0, T ;Lp(Γ ))

• u0 ∈ (L̃p,dom(Ap))1− 1
s
,s

4.2 Discussion of the State Equation

We start with the analysis of the state equation regarding solvability and differentia-
bility with respect to the control variable q . To this end, we consider

ut − ∇ · μ∇u = f in Q

ut + ν · μ∇u + qu = g on ΣR

u = 0 on ΣD

u(x,0) = u0(x) in Ω̄.

(34)

Corollary 4.2 Let Assumption 4.1 be satisfied. Then, for every control q ∈ Qad the
state equation (34) admits a unique solution u ∈ W 1,s(0, T ; L̃p)∩Ls(0, T ;dom(Ap)).
Furthermore, there is a δ > 0, independent from q ∈ Qad , such that u belongs to
Cδ(Q̄) and the following a priori estimate holds true

‖u‖W 1,s (0,T ;L̃p) + ‖u‖Ls(0,T ;dom(Ap)) + ‖u‖Cδ(Q̄)

≤ ĉ
(‖f ‖Ls(0,T ;Lp(Ω)) + ‖g‖Ls(0,T ;Lp(Γ ) + ‖u0‖(L̃p,dom(Ap)))

1− 1
s ,s

)
. (35)

Proof We rewrite the state equation as an operator equation fitting into the frame-
work of the previous section. First, the functions f ∈ Ls(0, T ,Lp(Ω)) and g ∈
Ls(0, T ;Lp(Γ )) are considered as functions f̃ , g̃ in the space Ls(0, T ; L̃p) via
the respective extensions by zero. According to Definition 2.16, the maximal re-
striction of the operator −∇ · μ∇ to L̃p is denoted by Ap . Furthermore, we in-
troduce for any function q ∈ L∞(0, T ;Lp(Γ )) and any t ∈ (0, T ) the operator
B(t;q) : C(Ω̄) → Lp(Γ ),B(t;q)ψ = q(·, t)ψ |Γ and B(·;q) : J � t �→ B(t;q),
analogously to Definition 3.3. Now, the state equation (34) can be written as

u′ + Apu + B(·;q)u = f̃ + g̃, u(0) = u0. (36)

In view of Assumption 4.1, the existence of a unique solution u ∈ W 1,s(0, T ; L̃p) ∩
Ls(0, T ;dom(Ap)) immediately follows from Theorem 3.7. The a priori esti-
mate is a direct consequence of Theorem 3.9, since Qad is a bounded set in
L∞(0, T ;Lp(Γ )). �

Based on this result, we will introduce a control-to-state mapping. We start with
the definition of the state space.

Definition 4.3 Let p, s, be chosen according to Assumption 4.1. Then, the state space
is defined by

Y := W 1,s
(
0, T ; L̃p

) ∩ Ls
(
0, T ;dom(Ap)

)
,

where the operator Ap is defined in Definition 2.16.
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Definition 4.4 Based on Corollary 4.2, we introduce the control-to-state operator
S : L∞(0, T ;Lp(Γ )) → Y by u = S(q), which assigns to q ∈ L∞(0, T ;Lp(Γ )) the
unique solution u ∈ Y of (36).

Remark 4.5 The previous result regarding continuity of the state variable would allow
to discuss pointwise state constraints within the optimal control problem. In that case
the establishment of first order necessary conditions becomes more delicate, since La-
grange multipliers regarding pointwise state constraints are only measures, see, e.g.,
[1, 12]. Moreover, the elaboration of second order sufficient optimality conditions
is very difficult due to the low regularity of an adjoint state caused by the presence
of measures in the right hand side of the respective adjoint equation. In particular,
the derivation of sufficient optimality conditions in the case of parabolic boundary
control problems with pointwise state constraints is still an open question even for
smooth data and simpler boundary conditions, at least in higher space dimensions.
For detailed information concerning second order sufficient optimality conditions for
parabolic optimal control problems with state constraints we refer to [52].

In order to establish optimality conditions for problem (P), it is essential to show
Fréchet-differentiability of the control-to-state operator S, mapping q to u = S(q).

Theorem 4.6 Let Assumption 4.1 be satisfied. Then, the control-to-state operator S is
twice continuously Fréchet-differentiable from L∞(0, T ;Lp(Γ )) to Y . Its derivative
uh := S′(q)h at the point q in direction h is given by the solution of

u′
h + Apuh + B(·;q)uh = −B(·;h)u, uh(0) = 0, (37)

where u = S(q) ∈ Y is the solution of the state equation w.r.t q . Furthermore, uh1h2 =
S′′(q)[h1, h2], hi ∈ L∞(0, T ;Lp(Γ )), i = 1,2 is the solution of

u′
h1h2

+ Apuh1h2 + B(·;q)uh1h2 = −(
B(·;h1)uh2 + B(·;h2)uh1

)
, uh1h2(0) = 0,

(38)
with uhi

= S′(q)hi, i = 1,2.

Proof We will utilize the implicit function theorem to prove the Fréchet-differenti-
ability of the solution operator S. Analogously to the proof of Theorem 3.7, we denote
the function t �→ e−t (Ap+1)u0 by w. Due to u = S(q) and Definition 4.4, v := u − w

satisfies

v′ + Apv + B(·;q)v = f̃ + g̃ − B(·;q)w + w, v(0) = 0.

Next, we introduce the mapping F : Y × L∞(0, T ;Lp(Γ )) → Ls(0, T ; L̃p) by

F (v, q) := v′ + Apv + B(·;q)v − f̃ − g̃ + B(·;q)w − w.

One can easily see that according to Corollary 4.2 and the previous ansatz v := u−w,
for every q ∈ L∞(0, T ;Lp(Γ )) there is a unique v(q) ∈ Y such that F (v(q), q) = 0.
Obviously, the mapping F is continuously differentiable with respect to v. Its partial
derivative ∂v F (v, q) with respect to v is the mapping vh �→ v′

h + Apvh + B(·;q)vh,
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which is, due to Theorem 3.4, a topological isomorphism between W
1,s
0 (J ; L̃p) ∩

Ls(J ;dom(Ap)) and Ls(J ; L̃p). Hence, the Implicit function theorem applies, i.e.
v(q) and u = S(q), respectively, are continuously differentiable. The particular form
of the derivative of v w.r.t. q immediately follows from

∂qv(q)h = −(
∂v F (v, q)

)−1
∂q F (v, q)h = (

∂v F (v, q)
)−1(−∂q B(·;q)h(v + w)

)
.

Using again the ansatz v := u − w and ∂q B(·;q)h = B(·;h), see Definition 3.3, the
derivative S′(q)h =: uh of the control-to-state operator u = S(q) at point q in direc-
tion h is given by

u′
h + Apuh + B(·;q)uh = −B(·;h)u, uh(0) = 0.

Applying again the Implicit function theorem to the previous equation using the no-
tations uh1h2 = S′′(q)[h1, h2] and uhi

= S′(q)hi, i = 1,2, respectively, one obtains
(38). �

Remark 4.7 It can be proved that the mapping is not only C2, but C∞ and even
analytic (see [42, Chap. III.3]), since F in the previous proof is C∞ and even analytic
w.r.t. the first variable.

4.3 Existence of Optimal Control and First Order Necessary Conditions

In this section we will elaborate first order necessary conditions for the optimal con-
trol problem (P). Since the state equation is nonlinear, we cannot expect uniqueness
of an optimal control and we have to deal with local optimal controls. First, we want
to clarify the existence of an optimal solution for problem (P).

Theorem 4.8 Let Assumption 4.1 be satisfied. Then there exists at least one solution
of problem (P).

Proof Due to Corollary 4.2, there exists a unique solution

u ∈ W 1,s
(
0, T ; L̃p

) ∩ Ls
(
0, T ;dom(Ap)

)
↪→ Cδ(J × Ω)

of the state equation (34) for every control q ∈ Qad . Since the set of admissi-
ble controls Qad is bounded in L∞(ΣR), the set of solutions u is bounded in
W 1,s(0, T ; L̃p) ∩ Ls(0, T ;dom(Ap)) and also bounded in Cδ(Q̄), see Theorems 3.7
and 3.9. Obviously, there exist a minimizing sequence {qn} converging to

l = inf
q∈Qad

J
(
S(q), q

)
.

Since Qad is bounded and convex, we can extract a subsequence {qnk
} which con-

verges weakly in Ls(J ;Lp(Γ )) to a function q̄ ∈ Qad . The sequence {un = S(qn)} is
bounded in W 1,s(0, T ; L̃p)∩Ls(0, T ;dom(Ap)) and also bounded in Cδ(Q̄). Hence
we may extract a further subsequence {unk

} still subscripted by nk , which weakly
converges in W 1,s(0, T ; L̃p)∩Ls(0, T ;dom(Ap)) to an element ū and in C(J × Ω)
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strongly to ū. It is not hard to see that then the sequence {B(·;qnk
)unk

} converges in
Ls(J ; L̃p) weakly to B(·; q̄)ū. As in the proof of Theorem 3.7, we rewrite (29) with
u = unk

as (30) with vnk
= unk

− w or, equivalently,

vnk
=

(
∂

∂t
+ Ap

)−1(
f − B(·;qnk

)unk
+ w

)
. (39)

It is clear that vnk
converges weakly in W 1,s(0, T ; L̃p)∩Ls(0, T ;dom(Ap)) to ū−w

and f − B(·;ql)ul +w to f − B(·; q̄)ū+w, weakly in Ls(J ; L̃p). But ( ∂
∂t

+Ap)−1 :
Ls(J ; L̃p) → W 1,s(0, T ; L̃p)∩Ls(0, T ;dom(Ap)) is also continuous, if both spaces
are equipped with their weak topologies (see [23, Chap. V.3]). This implies

∂v

∂t
+ Apv = f − B(·; q̄)ū + w, or, equivalently,

∂ū

∂t
+ Apū + B(·; q̄)ū = f.

The optimality of {ū, q̄} follows by standard arguments using the lower semicontinu-
ity of the cost functional w.r.t. q and Assumption 4.1, respectively. �

In order to establish first order necessary optimality conditions the present control-
to-state mapping S is rather abstract due to the choice of the state space Y , see Defi-
nition 4.3. In the following, we will consider the Hilbert space setting

Y = W 1,2(0, T ; L̃2) ∩ L2(0, T ;H 1,2
Γ

)

as the state space such that u = S(q) is equivalent to the following variational formu-
lation of the state equation (34), i.e.

∫∫
ΣR

utvdσΓ dt +
∫∫

Q

utvdxdt +
∫∫

Q

μ∇u∇vdxdt +
∫∫

ΣR

quvdσΓ dt

=
∫∫

Q

f vdxdt +
∫∫

ΣR

gvdσΓ dt ∀v ∈ L2(0, T ;H 1,2
Γ

)
(40)

u(0) = u0. (41)

Let us introduce the reduced objective functional j : L∞(0, T ;Lp(Γ )) → R by

j (q) := J
(
S(q), q

) = 1

2

∫∫
ΣR

(
S(q) − ud

)2
dσΓ dt + α

2

∫∫
ΣR

q2dσΓ dt.

By chain rule and Theorem 4.6, the cost functional j (q) is continuously Fréchet dif-
ferentiable w.r.t q from L∞(0, T ;Lp(Γ )) to R, since the solution operator S is of
course continuously Fréchet differentiable from L∞(0, T ;Lp(Γ )) to Y . The deriva-
tive at point q̄ in direction h is given by

j ′(q̄)h =
∫∫

ΣR

(ū − ud)uhdσΓ dt + α

∫∫
ΣR

q̄hdσΓ dt, (42)

where we have used the abbreviation uh = S′(q̄)h.
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In the following, we will express this derivative in terms of an adjoint state ϕ. To
this end, we introduce the following formal adjoint equation

−ϕt − ∇ · μ∗∇ϕ = 0 in Q

−ϕt + ν · μ∗∇ϕ + q̄ϕ = ū − ud on ΣR

ϕ = 0 on ΣD

ϕ(x,T ) = 0 in Ω̄,

(43)

where μ∗ is the adjoint coefficient function to μ. Similarly to Definition 2.16, we
denote the maximal restriction of −∇ · μ∗∇ to L̃p as the formal adjoint of the dif-
ferential operator −∇ · μ∇ by A∗

p . Since ū|Γ − ud ∈ Ls(0, T ,Lp(Γ )) we can apply

Corollary 4.2 and conclude that there exists a unique solution ϕ ∈ W 1,s(0, T ; L̃p) ∩
Ls(0, T ;dom(A∗

p)) ∩ Cδ(Q̄) satisfying the a priori estimate

‖ϕ‖W 1,s (0,T ;L̃p) + ‖ϕ‖Ls(0,T ;dom(A∗
p)) + ‖ϕ‖Cδ(Q̄) ≤ ĉ‖ū|Γ − ud‖Ls(0,T ;Lp(Γ ). (44)

Similar to the state variable, the adjoint state ϕ satisfies a variational formulation, in
particular

−
∫∫

ΣR

ϕtvdσΓ dt −
∫∫

Q

ϕtvdxdt +
∫∫

Q

μ∗∇ϕ∇vdxdt +
∫∫

ΣR

q̄ϕvdσΓ dt

=
∫∫

ΣR

(ū − ud)vdσΓ dt ∀v ∈ L2(0, T ;H 1,2
Γ

)
(45)

ϕ(T ) = 0.

According to Theorem 4.6, we know that uh = S′(q̄)h with h ∈ L∞(0, T ;Lp(Γ ))

solves the initial boundary value problem (37), which in weak form reads as
∫∫

ΣR

(uh)tvdσΓ dt +
∫∫

Q

(uh)tvdxdt +
∫∫

Q

μ∇uh∇vdxdt +
∫∫

ΣR

q̄uhvdsdt

= −
∫∫

ΣR

hūvdσΓ dt ∀v ∈ L2(J ;H 1,2
Γ

)
(46)

uh(0) = 0.

Now we insert uh as a test function in (45), replace the first term on the right-hand
side of (42) by the left-hand side of (45) and use (46) with test function ϕ to obtain

j ′(q)h =
∫∫

ΣR

(−ϕū + αq̄)hdσΓ dt.

Hence, the first order necessary optimality condition reads as follows:
∫∫

ΣR

(−ϕū + αq̄)(q − q̄)dσΓ dt ≥ 0 ∀q ∈ Qad,
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where ϕ ∈ W 1,s(0, T ; L̃p) ∩ Ls(0, T ;dom(Ap)) is the unique solution of the adjoint
equation (43). To summarize, the first order optimality conditions for problem (P)
can be formulated as follows.

Theorem 4.9 Let q̄ ∈ Qad be a (local) optimal control with associated state ū ∈
W 1,s(0, T ; L̃p) ∩ Ls(0, T ;dom(Ap)) of problem (P). Then, there exists an adjoint
state ϕ̄ ∈ W 1,s(0, T ; L̃p) ∩ Ls(0, T ;dom(A∗

p)), such that the following optimality
system is satisfied

ū′ + Apū + B(·; q̄)ū = f̃ + g̃, ū(0) = u0, (47)

−ϕ̄′ + A∗
pϕ̄ + B(·; q̄)ϕ̄ = ū − ũd , ϕ(T ) = 0, (48)

∫
ΣR

(−ϕ̄ū + αq̄)(q − q̄)dσΓ dt ≥ 0 ∀q ∈ Qad. (49)

4.4 Second Order Sufficient Optimality Conditions

To avoid too many technicalities, we will concentrate on the establishment of second
order sufficient optimality conditions for local solutions in L∞-sense. The consider-
ation of local solutions w.r.t to weaker norms is more evolved and will be part of a
forthcoming work.

By means of Theorem 4.6, the reduced cost functional j (q) is of course also twice
differentiable from L∞(ΣR) to R and we obtain for the second derivative of the
reduced objective at the local optimal point q̄ ∈ Qad in directions h1, h2 ∈ L∞(ΣR)

j ′′(q̄)[h1, h2] =
∫∫

ΣR

S′(q̄)h2S
′(q̄)h1dσΓ dt

+
∫∫

ΣR

(
S(q̄) − ud

)
S′′(q̄)[h1, h2]dσΓ dt + α

∫∫
ΣR

h1h2dσΓ dt.

As before we utilize the adjoint equation (43) and the equation for 2nd derivative
S′′(q̄)[h1, h2], see (38) to replace the second term on the right-hand side, yielding the
expression

j ′′(q̄)[h1, h2] =
∫∫

ΣR

uh1uh2dσΓ dt + α

∫∫
ΣR

h1h2dσΓ dt

−
∫∫

ΣR

(uh1h2 + uh2h1)ϕ̄dσΓ dt, (50)

with uhi
= S′(q)hi, i = 1,2 and ϕ̄ is the solution of the adjoint equation (43).

The crucial point in the analysis of second order sufficient optimality conditions
is the fact that the quadratic form j ′′(q̄)[h1, h2] has to depend continuously on hi,

i = 1,2 in the L2-norm, i.e. we have to ensure the following continuity estimate

∣∣j ′′(q̄)[h1, h2]
∣∣ ≤ c‖h1‖L2(ΣR)‖h2‖L2(ΣR) (51)
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for all hi ∈ L∞(ΣR). This is motivated by consideration on the so-called two-norm
discrepancy, see e.g. [57, Chap. 4.10.2].

The first term in j ′′(q̄)[h1, h2] (see (50)) can be estimated with respect to the
L2-norms of hi, i = 1,2 by applying standard a priori estimates and embeddings,
e.g.

‖uhi
‖L2(ΣR) ≤ c‖uhi

‖
L2(0,T ;H 1,2

Γ (Ω))
≤ c‖ū‖C(Q̄)‖hi‖L2(ΣR), (52)

since the control q̄ and the directions hi are considered as functions in L∞(ΣR).
Moreover, the optimal state ū is bounded in C(Q̄), see (35). The third term is the
more delicate one. Here we take advantage of the regularity and the respective a
priori estimate of the adjoint state, see (44), such that we derive the estimate

∣∣∣∣
∫∫

ΣR

(uh1h2 + uh2h1)ϕ̄dσΓ dt

∣∣∣∣ ≤ c‖ϕ̄‖C(Q̄)‖h1‖L2(ΣR)‖h2‖L2(ΣR).

We note that the previous estimate heavily rests on the continuity of the adjoint state
ϕ and for this reason on the results derived in Sect. 3. The continuity estimate (51)
allows to estimate the second order remainder term of the reduced cost functional j .
Based on

j (q) = j (q̄) + j ′(q̄)(q − q̄) + 1

2
j ′′(q̄)[q − q̄, q − q̄] + r(q̄, q − q̄)

one derives the estimate
∣∣r(q̄, q − q̄)

∣∣ ≤ c‖q − q̄‖L∞(ΣR)‖q − q̄‖2
L2(ΣR)

(53)

applying (51). This estimate is an essential part for the establishment of second order
sufficient optimality conditions, see [57, Chap. 4.10.2].

In all what follows, we denote by q̄ an admissible control of problem (P) with
associated state ū = S(q̄). Furthermore, we suppose that the first order necessary
optimality conditions given in Corollary 4.9 are fulfilled by q̄ , the respective state ū

and adjoint state ϕ̄. For the statement of second order sufficient optimality conditions
we will count on so called strongly active sets. We start with the definition of the
τ -critical cone associated to q̄:

Cτ (q̄) := {
h ∈ L2(ΣR) : h := q − q̄ satisfies (54), q ∈ Qad

}
,

where

h(x, t)

⎧⎪⎨
⎪⎩

≥ 0, if q̄(x, t) = qa

≤ 0, if q̄(x, t) = qb

= 0, if | − ϕ̄(x, t)ū(x, t) + αq̄(x, t)| > τ.

(54)

We are now in the position to formulate second order sufficient optimality conditions
for problem (P). With the above results, in particular the regularity results and the
remainder estimate (53), the proof of the following theorem is completely analogous
to the one presented in [57, Theorem 5.17]
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Theorem 4.10 Let q̄ be an admissible control of problem (P) with associated state
ū = S(q̄) satisfying the first order necessary optimality conditions given in Corol-
lary 4.9 with associated adjoint state ϕ̄. Further, it is assumed that there are two
constants τ > 0 and δ > 0 such that

j ′′(q̄)h2 ≥ δ‖h‖2
L2(ΣR)

holds for all directions h ∈ Cτ (q̄). Then there exist a δ̃ > 0 and ρ > 0 such that

j (q) ≥ j (q̄) + δ̃‖q − q̄‖2
L2(ΣR)

(55)

holds for all q ∈ Qad with ‖q − q̄‖L∞(ΣR) ≤ ρ.

Such kind of sufficient optimality conditions are an indispensable tool basis for
carrying out numerical analysis of optimal control problems, e.g. error estimates in
numerical discretizations or convergence analysis of the sequential quadratic pro-
gramming method in order to solve optimal control problems.
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